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Summarizing Data in Simple Patterns

Information Technology =» collection of huge data sets,
often multi-way data z(i,j,k,...)

Approximation: Multi-way data = simple patterns

e data interpretation (psychometrics, neuro-imaging,
data mining)

e separation of chemical compounds (chemometrics)
e separation of mixed signals (signal processing)

e faster calculations (algebraic complexity theory,
scientific computing)



Simple structure = rank 1

2-way array = matrix Z (IxJ) with entries z(i,j)
rank1: Z=ab'=aob €2 z(j) =a().-b()

rank(Z) = min{R: Z = a;ob; + ... + arobr }

3-way array Z (IxJxK) with entries z(i,j,k)

rank1l: Z=aoboc € z(ijk)=a()-bQj).c(k)

rank(Z) = min{R: Z = aj;ob;oC; + ... + arobr oCr }



2-way (PCA) decomposition

Z = a;ob;+ ... + arobg + E

AB' +E with A =[a; ..

B = [b1

Goal: Find (A,B) that minimize ssq(E)



3-way Candecomp/Parafac (CP)

o R

b, »
+ ... T +

IN

di dr

Z

a;objoc; + ... + aRobrocg + E

Goal: Find (A,B,C) that minimize ssq(E)
with C = [¢; ... Cg]



2-way PCA

computation iterative algorithm SVD
best rank-R yes yes
approximation
rotational under mild no
uniqueness conditions *
existence for not guaranteed yes

R < rank(data)

* Kruskal (1977) and many more since 2000



3-way CP as Optimization Problem

Minimize ssq(Z-Y)
over Sp={{Y: rank(Y) <R}

= if Z& Sr, then an optimal solution X (if it exists)
will be a boundary point of Sg

But : the set Sg is not closed for R = 2

Bini et al. (1979), Paatero (2000), Lim (2004)
De Silva & Lim (2008)



A misleading picture

set Sy

rank < R

updates Y e

/ rank > R




Suppose Y = (A,B,C) —— optimal X and X & Sy

Then some rank-1 terms a,ob,oC, converge to

linear dependency and infinite norm

=>» diverging components (“degeneracy”)

Also :  slow convergence of iterative CP algorithm

Harshman & Lundy (1984), Kruskal et al. (1989), Krijnen et al.
(2008), Stegeman & De Lathauwer (2011)



Two diverging components
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Y® + YO remains “small” and contributes to
a better CP fit
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Remarks on diverging components

e CP sequence (A,B,C) may contain several groups of
diverging components

e In each group of diverging components
cos(as,a;) « cos(bg,b;) - cos(c,,c;) is close to £1 (a.e.)

e For random data Z diverging components occur very
often (up to 60-100%)

e Diverging components cannot be interpreted and must
be avoided when interpretation is the goal
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How to avoid diverging CP components (1)

= make sure an optimal CP solution exists

By imposing constraints in CP:

e A, B or Cis constrained to have orthogonal columns
(Harshman & Lundy, 1984; Krijnen et al., 2008)

e Z is nonnegative and A, B and C are constrained to
be nonnegative (Lim, 2005; Lim & Comon, 2009)
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How to avoid diverging CP components (2)

= change the CP problem into: (De Silva & Lim, 2008)

Minimize ssq(Z-Y)

over closure of S

What is heeded?

= Complete characterization of boundary points

=» Algorithm to find an optimal boundary point
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Boundary points and algorithms are known for :

e [XJxK and R=2

via constrained 2x2x2 Tucker3 decomposition
(Rocci & Giordani, 2010)

e [xJx2 and R < min(l,J)
via Generalized Schur Decomposition
(Stegeman & De Lathauwer, 2009; Stegeman, 2010)

e in both cases we do not need a CP algorithm !

¢ in both cases the solution can be transformed to CP
form when no diverging components occur
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Finding the optimal boundary point in general

Each group of diverging CP components has a limit with a
specific decomposition form

For R=2 diverging components: (A,B,C) - (S,T,U)-G

with G=1|0 1/0 0 and rank(G) = 3

(S,T,U)-G = (siotiou;) + (s20ty0u;) + (s10t0uy)

De Silva & Lim (2008)
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(A,B,C) > (ST U)-G

R=3 or 4 diverging components:
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Stegeman (2012, 2013a)
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For several groups of diverging components or a
combination of diverging and nondiverging components:

add the terms to obtain a decomposition of the limit X

Algorithm

1.
2.

3.

4,

Run a CP algorithm, obtain solution (A,B,C).

When diverging components occur, order them in
groups and determine decomposition form of limit X.
Compute initial values for decomposition of X from
(A,B,C).

Fit decomposition form of X to data Z using initial
values from (A,B,C). Simple ALS algorithm !

Stegeman (2012, 2013a), Kiers & Smilde (1998)
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Numerical Example: 6x6x6 and R=6

CP ALS with tolerance 1e-9 terminates after 19.645 iters
Y = (A,B,C) has 2+3 diverging components
ssq(Z-Y) = 54.5370

fit model Z — (Slltllul) + (SZITZIUZ)’QZ_F
(S3,T5,U3)+Gs + E

ssq(Z — X) = 54.5336, tolerance 1le-12, 137 iters

condition numbersof S, T, U are: 21.8, 6.3, 61.0
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Application: CP analysis of TV-ratings (1981)

Mode A ek

Mode

Mode C
Person Mode

Mode B
Rating Scale Mode

15 TV shows x 16 Rating Scales x 30 Persons
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15 TV shows

M*A*S*H

= — CHARLIC'S

.; | 1T
OVES YA,
BABY?”
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16 Rating Scales

Thrilling / Boring 13. Deep / Shallow
Intelligent / Idiotic 14. Tasteful / Crude
Erotic / Not Erotic 15. Real / Fantasy
Sensitive / Not 16. Funny / Not
Interesting / Not

Fast / Slow

Intellectually Stimulating / Dull

Violent / Peaceful

Caring / Callous

10 Satirical / Not

11.Informative / Not

12.Touching / Leaves Me Cold

WO N AWNH
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CP with R=3 yields two diverging components

Fit = 50.76 % Comp.3 = "Humor” (24.38 %)

Comps. 1 & 2 have triple cosine = -0.996
ssq =~ 100+ssg(comp.3)

Try CP with R=3 and orthogonal TV show components:

Fit = 50.22 % “Humor” 27.19 %
“Sensitivity” 13.04 %
“Violence” 9.99 %

Lundy et al. (1989), Harshman (2004)
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Component 1 = "Humor”

[V shows mode Scales mode
Sat rday Night Live
15F
ll‘(an d Mindy Satirical
| th 2+
1 _AII'le!nTon?g t 5 Ew
Funny
Mash
051 1 5 LFantasy
OF Erg tltc
Uninformative
TF
05F Idiotic/Dull
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Component 2 = “"Sensitivity”

TV shows mode

2 -mﬁé”ﬁ.':tﬁé’es on the Prairie

15F

_Mnrk and Mindy
05F

05F
Charlie's Angels

'News/Saturday Night Live

15 'Football

Scales mode

Caring/Peaceful / Sensitive

151

Touching/Tasteful
1 ISlow/Boring

Deep
05F
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Component 3 = “Violence”
TV shows mode Scales mode
'Charlie's Angles , - | Violent
L 2 -
Kojak _
i Erotic
tgggbl?llsllke a Deal 151
i Uninformative

60 Minutes

-1 rAll in the Family

Jacques Cousteau

' The Tonight Show

Intellectually Dull

Idiotic/Uninteresting
Fast

05

T
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Decomposition of the limit X in 4 terms

Fit = 50.7571 %  (50.7569 for R=3 unconstrained)

X = (Slotloul) + (Szotzoul) + (510t20u2) + (S3Ot3OU3)

(siotiouy): “Violence” 7.62 %
(s,ot,ou,): “Sensitivity” 10.75 %
(s;ot,ou,): interaction 1.55 %
(ssotz0U3): “Humor” 24.37 %

Stegeman (2013b)



Final Remarks

e Avoid diverging CP components by either imposing
constraints (orthogonality, nonnegativity) or including
the boundary of the rank-R set

e When constraints are not appropriate, finding the
optimal boundary point X and its decomposition is a
good alternative

e For the TV-ratings data, the decomposition of the
optimal boundary point X yields interpretable oblique
components
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